Search results for "Brain delivery"
showing 5 items of 5 documents
Nose-to-brain delivery of insulin enhanced by radiation-engineered nanogels
2018
Recent evidences suggest thet insulin delivery to the brain can be an important pharmacological therapy for some neurodegenerative pathologies, including Alzheimer disease (AD)
Controlled Iontophoretic Delivery in Vitro and in Vivo of ARN14140—A Multitarget Compound for Alzheimer’s Disease
2019
ARN14140 is a galantamine-memantine conjugate that acts upon both cholinergic and glutamatergic pathways for better management of Alzheimer's disease. Poor oral bioavailability and pharmacokinetics meant that earlier preclinical in vivo studies employed intracerebroventricular injection to administer ARN14140 directly to the brain. The aim of the present study was to evaluate the feasibility of using constant current transdermal iontophoresis for the noninvasive systemic delivery of ARN14140 and to quantify the amounts present in the blood and the brain. Preliminary experiments in vitro were performed using porcine skin and validated with human skin. Cumulative ARN14140 permeation across th…
CNS-targeted valproic-aminoacid conjugate: preliminary studies on pharmacokinetic parameters and antiepileptic activity
2009
Nose-to-brain delivery of insulin enhanced by a nanogel carrier.
2018
Recent evidences suggest that insulin delivery to the brain can be an important pharmacological therapy for some neurodegenerative pathologies, including Alzheimer disease (AD). Due to the presence of the Blood Brain Barrier, a suitable carrier and an appropriate route of administration are required to increase the efficacy and safety of the treatment. Here, poly(N-vinyl pyrrolidone)-based nanogels (NG), synthetized by e-beam irradiation, alone and with covalently attached insulin (NG-In) were characterized for biocompatibility and brain delivery features in a mouse model. Preliminarily, the biodistribution of the "empty" nanocarrier after intraperitoneal (i.p.) injection was investigated b…
Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain
2021
Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The…